Basispraktikum: Robot Learning
- Type: Praktikum (P)
- Chair: IAR Lioutikov
- Semester: SS 2025
-
Lecturer:
TT-Prof. Dr. Rudolf Lioutikov
Paul Mattes - SWS: 4
- Lv-No.: 2400125
- Information: On-Site
Content | Qualification Goals: Students learn to work with current software and frameworks to write usable code in Python. They will engage with the RoboCasa framework and use simulated robot environments to train various neural networks with PyTorch. By the end, students will be able to create their own structured PyTorch-based projects and document results in a visually appealing and clear manner. Content: Students will be divided into pairs to work on programming projects throughout the semester. The course will initially cover the basics of Conda, PyTorch, WandB, Hydra, and Git. Additionally, fundamentals of MLPs, CNNs, and GNNs will be taught and implemented. The RoboCasa framework will be used to evaluate robot simulations based on the students' trained neural networks. This also includes understanding and implementing training and evaluation scripts. |
Language of instruction | German/English |
Organisational issues | Die Erfolgskontrolle erfolgt nach § 4 Abs. 2 Nr. 3 SPO als Erfolgskontrolle anderer Art. Es muss Quellcode erstellt und eine Präsentation gehalten werden. Ein Rücktritt ist innerhalb von zwei Wochen nach Vergabe des Themas möglich. Voraussetzungen: Keine Empfehlungen:
Arbeitsaufwand:
WICHTIG Infos und Anmeldung erfolgt ueber den Ilias-Kurs. |